Scientific Advisory Board
Nanolytics is pleased to have established a Scientific Advisory Board whose members are three of the
leading experts in Analytical Ultracentrifugation (AUC) and its various applications.
The purpose of the Board is to lend critical support in staying ahead of the state of the art of scientific
and technological developments in Analytical Ultracentrifugation which still mainly rely on the efforts of its users.
Furthermore, Nanolytics has been participating in the
Open Analytical Ultracentrifugation Project
to efficiently focus the capabilities of the community to advance the AUC hardware and software [1]. The Open
Analytical Ultracentrifugation strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have
plagued Analytical Ultracentrifugation innovation for the last 20 years.
Accordingly, the implementation of the Scientific Advisory Board enhances the expertise of Nanolytics to
optimally exploit the scientific potential of Analytical Ultracentrifugation for the needs of the clients.
[1]: Cölfen, H., Laue, T.M., Wohlleben, W., Schilling, K., Karabudak, E., Langhors,t B.W., Brookes, E., Dubbs,
B., Zollars, D., Rocco, M., Demeler, B. The Open AUC Project. Eur. Biophys. J. 2010, 39, 347–359.
Helmut Cölfen
Professor for Physical Chemistry
Department of Chemistry
Universität Konstanz
D-78457 Konstanz, Germany
Web page: www.chemie.uni-konstanz.de/coelfen/
Helmut Cölfen is listed in the Thomson Reuters list of top 100 chemists worldwide for the years 2000–2010,
having achieved an outstanding publication record of more than 200 publications (h-index: 46, at 12/2010).
Moreover, he is reviewer for more than 100 scientific journals.
The group of Helmut Cölfen investigates various crystalline systems and nucleation mechanisms mainly under
the topic „From biominerals to novel bioinspired materials.“
A major methodical focus is on developing new optical detection systems with the final goal of a multidetector
AUC capable of simultaneous determination of several complimentary physicochemical quantities or to utilize
the power of this fractionating method for complex colloidal systems – also in a global analysis approach
with other techniques.
Borries Demeler
Associate Professor, Department of Biochemistry
Director, Center for Analytical Ultracentrifugation of Macromolecular Assemblies (CAUMA)
Director, Center for Light Scattering
Director, Bioinformatics Core Facility (BCF)
The University of Texas Health Science Center at San Antonio
Department of Biochemistry
San Antonio, Texas 78229-3900, USA
Web page: www.demeler.uthscsa.edu
Borries Demeler is author of more than 90 publications.
The main project involves the development of the UltraScan data analysis software package
(www.ultrascan.uthscsa.edu). This software is used
for modeling of hydrodynamic and thermodynamic properties of biological and synthetic macromolecules, and
interactions and thermodynamic characteristics of macromolecular assemblies. Areas of research involve advanced
numerical analysis, optimization, high-performance network computing and cluster computing. The current focus is
on the development of software for the interpretation of multiwavelength sedimentation velocity experiments, and
on spectral decomposition of analytical ultracentrifugation experiments.
Thomas M. Laue
Professor of the Department of Molecular, Cellular and Biomedical Science
Director of the Center to Advance Molecular Interaction Science (CAMIS)
Director of the Biomolecular Interaction Technologies Center
Department of Biochemistry and Molecular Biology,
University of New Hampshire
Durham, NH 03824, USA
Web page: www.researchgate.net/profile/Tom_Laue
Tom Laue is author of more than 100 publications.
The research in Laue´s laboratory is directed toward the development of direct physical methods for determining
properties of macromolecules, including mass, charge, size, shape, and solubility, as well as the state of aggregation
and the extent of ligand binding.
Along with standard optical methods, his lab has developed novel instrumentation for sedimentation analysis, in
particular an efficient interference detector (which was introduced into the Beckman Coulter XLI analytical centrifuge)
and a fluorescence detection system (FDS, available as a third party add-on), and for charge analysis (capillary
electrophoresis, membrane-confined analytical electrophoresis, MCE). These methods are being applied to a wide range
of macromolecular interactions, including those in blood coagulation, DNA transcriptional regulation, viral DNA integration,
and gel formation.